彩神彩票app计划群|彩神彩票app官网平台
彩神彩票app充值2023-01-31 16:05

彩神彩票app计划群

东西问·深问丨庞军:中国减碳路如何跨越“气候变化陷阱”?******

  中新社北京10月11日电 题:中国减碳路如何跨越“气候变化陷阱”?

  ——专访中国人民大学环境学院院长、国家发展与战略研究院研究员庞军

  作者 徐雪莹

  气候变化是否为西方限制发展中国家的陷阱?在目前的技术水平下,碳减排确实会以牺牲一定的经济增长为代价。近年来,美国更以“苛刻财政和经济负担”为由,曾退出《巴黎协定》。

  中国作为世界上最大的发展中国家,其“双碳”进程何以同经济发展“双轨并行”?又如何以更短时间实现全球最大碳排放强度降幅?

  “这些年,中国在提升能源使用效率、大力发展新能源及可再生能源等方面取得了很多成就。”中国人民大学环境学院院长、国家发展与战略研究院研究员庞军日前接受中新社“东西问”独家专访时指出,经济结构变化会影响能源需求总量和能源结构,推行低碳理念同样能带来更多商机。中国通过双碳“1+N”政策体系、减污降碳协同增效、建立健全碳定价等市场机制作用、大力发展新能源及可再生能源技术、加大碳捕获碳吸收技术开发利用等综合举措,有决心和意志如期完成“双碳”目标,贡献国际环保事业。

  现将访谈实录摘要如下:

  中新社记者:中国如何以更短时间实现全球最大碳排放强度降幅?其降碳举措和西方相比有何不同?

  庞军:从碳达峰到碳中和,美国从2007年到目标2050年间隔43年,欧盟为71年,中国承诺实现的时间只有30年。

  在碳减排上,中国如今面临的一些困难,是西方当年所没有的。西方提出减碳计划时,基本已走到工业化后期阶段,产业结构转型较为彻底,很多高污染、高耗能、高碳排放行业都转移到了发展中国家。中国由于人口、产业、技术等因素,加上国际产业分工的一些阻力,难以通过产业转移来减碳。同时,中国能源结构以煤炭主导的化石能源为主,碳减排任务更艰巨。

  虽然只有30年时间,但中国有决心和意志如期实现“双碳”目标,具体行动包括以下几点:

  首先,立足能源结构以煤为主的基本国情,大力提升能源使用效率,降低单位GDP碳排放量,同时大力发展新能源、可再生能源。目前,中国可再生能源发展已跻身世界前列,水电、风电和光伏发电装机规模居全球前列、新能源汽车市场迅速崛起,都利于减碳。

宁夏银川市贺兰县“渔光互补”发电项目。(无人机照片)袁宏彦 摄
宁夏银川市贺兰县“渔光互补”发电项目。(无人机照片)袁宏彦 摄

  其次,在顶层设计上,中国提出双碳“1+N”政策体系,明确了具体的时间表、路线图。对能源、工业、城乡建设、交通运输等不同行业,针对重点领域出台碳达峰实施方案,梯次有序开展碳达峰行动。

  再次,同西方相比,中国采取减污降碳协同增效的办法。即在降低二氧化碳等温室气体排放的同时,推进大气污染防治,加大氮氧化物、挥发性有机物(VOCs)、二氧化硫等传统污染物的协同减排力度。

  最后,中国建立了全球最大的碳市场,相比于西方国家碳市场的体量更庞大。未来可以利用全国统一碳市场,纳入不同行业,通过核证自愿减排量(CCER)交易、碳税、可再生能源配额、可再生能源交易制度、绿色电力证书交易制度等措施,形成针对高耗能行业的有效减碳手段。

线路工人在安徽省淮北袁庄境内进行晋北-南京工程±800千伏特高压直流输电线路施工作业。该工程是国家大气污染防治行动计划12条重点输电通道之一。王文 摄

线路工人在安徽省淮北袁庄境内进行晋北-南京工程±800千伏特高压直流输电线路施工作业。该工程是国家大气污染防治行动计划12条重点输电通道之一。王文 摄

  中新社记者:乌克兰危机等国际局势下,全球能源价格飙升,欧洲国家持续面临“油气荒”。这会否延缓各国迈向“双碳”的步伐?对中国能源结构转型有何影响?

  庞军:从短期来看,欧盟大量依赖俄罗斯天然气资源,乌克兰危机确实在一定程度上冲击了欧盟的低碳转型战略。

  欧洲难以获取俄罗斯天然气,又即将面临冬季采暖压力。此时能源安全显然更优先于低碳与能源转型。为解决冬季采暖等能源需求问题,德国、意大利等国可能会重启燃煤发电,或延缓燃煤电站关闭时间。这甚至可能影响到欧盟在2030年底温室气体排放量较1990年减少55%的目标。

  从长期来看,各国最终还是会向低碳方向迈进。若乌克兰危机持续,欧洲可能会重新考虑其能源转型路径。一会设法降低对俄罗斯的能源依赖,加大能源供应多样性。二会加大可再生能源的开发力度,如加快开发太阳能、氢能等能源。

  对于中国能源转型,乌克兰危机的直接影响没那么明显。中国能源结构以煤电为主,区别于俄罗斯供应的天然气。从某种意义上来说,俄罗斯反而有更多的清洁天然气可以供给中国,有利于中国增加清洁能源。但乌克兰危机对欧洲能源的影响也给中国能源转型带来启示,过度依赖国外能源资源,会令本国能源安全存在隐患。

2022年10月,天津LNG接收站二期项目有序进行中,确保5#、6#储罐供暖季前投用。中新社发 王军 摄

2022年10月,天津LNG接收站二期项目有序进行中,确保5#、6#储罐供暖季前投用。中新社发 王军 摄

  中新社记者:中国能源结构偏煤,产业结构偏重,减污降碳仍存在诸多困难和挑战。“双碳”行动中会采取哪些措施保证能源安全、产业链供应链安全?中国能源转型道路何以同经济发展相协调?

  庞军:以煤为主的能源结构,在中国短时间内难以改变。要保证能源安全,必须充分认识到煤炭在中国能源中的主体地位,保证煤炭持续稳定供应。同时,把煤炭的清洁高效利用作为重要抓手。一方面,对煤炭企业采取适当措施,在清洁能源利用技术上给予适当支持,促进其技术升级。另一方面,重视能源供应多元化,加大对清洁能源的开发。

  产业链供应链安全亦然。“双碳”工作不可能毕其功于一役,不能因为追求“双碳”目标,就对碳排放高的重要行业“一刀切”,而要挖掘、提升企业能源利用效率的潜力。

  当下,中国经济进入高质量发展阶段,要求建立健全绿色低碳循环发展的经济体系。能源转型同经济发展相协调,须降低化石能源使用比例,促进能源多元化,加大对氢能等可再生能源的利用。这些都有赖于技术支撑。因此,还需不断开发新能源、节能增效等技术,通过技术挖掘转型潜力,最终实现经济发展所需要的能源能得到持续供应。

安徽省阜阳市颍泉区伍明镇境内的茨河(黑河)水系与设立的风力发电装备相映衬。王彪 摄

安徽省阜阳市颍泉区伍明镇境内的茨河(黑河)水系与设立的风力发电装备相映衬。王彪 摄

  同时,经济发展也是能源需求重要的驱动因素。能源需求通常会伴随经济发展不断增长,但经济结构变化也会影响能源需求总量和能源结构。发展高新技术、金融服务等高附加值产业,对传统产业进行升级改造,有助于加速能源转型进程。

  中新社记者:中国幅员辽阔,不同地区在资源禀赋、产业分工、经济发展、碳排放水平等方面差异明显。中国各区域的产业结构调整方向有何不同?全国碳市场的设计如何考虑省际碳公平问题?

  庞军:中国西部地区能源资源丰富,特别是新能源、可再生能源等,但经济发展水平较低;中部地区劳动密集型产业较突出,重工业、化工业占比较高,经济发展水平相对发达;东部地区经济发展水平较高,往往依靠外部供应能源。

  中国各区域的产业结构调整,要充分发挥其资源禀赋和比较优势,才能在全国整体的经济发展格局下,使各区域产业结构趋向合理,形成区域间协同分工。

  东部地区要进一步加强传统产业改造和技术创新,发展外向型经济,如高附加值的高新技术产业、数字产业,提升国际竞争力。中部地区重化工业比例相对更高,要加快推进产业转型升级,引导高消耗、高排放、低附加值产业向低消耗、低排放、高附加值产业升级,推进第三产业发展。西部地区未来可作为中国新能源产业重要基地,为其他地区提供优质的清洁能源。

  其中有一点尤为重要,即防止污染产业的跨区域转移。不能说东部地区要发展,就将污染产业转移至西部;西部地区为提升GDP,就把高污染高耗能的产业承接过来。

  全国碳市场设计也应考虑到省际贸易问题。省际贸易中,能源产业较密集或重化工业所占比例较高的省份,往往会为外省承接一部分碳排放;经济发达且产业结构中以高附加值产业为主的省份,则会将部分碳排放转移到外省。

  因此,为解决省际碳公平问题,首先要充分考虑碳排放的空间分布特性,科学界定各省碳减排责任。对于高耗能省份,全国碳市场的配额发放要有所倾斜。配额过于宽松,起不到约束作用;过紧又会给这些省份的产业带来很大影响。因此,碳配额应当适度,并给予调整空间,让各省份有时间逐步调整能源结构。

  其次,从长远来看,真正的功夫应下到碳市场之外,即通过资金、技术、人才等支持,帮助高耗能省份尽快升级改造产业结构、能源结构。例如,通过适度的碳配额拍卖筹措碳减排资金,用以支持传统省份进行节能改造与产业技术升级,缓解因省际分配效应而加剧的地区不公平。

  中新社记者:作为一场广泛而深刻的经济社会系统性变革,世界减碳历程有否可参考的经验?中国这场“双碳”变革又能为国际环保事业带来什么?

  庞军:发达国家在减碳历程中,通过立法引领、财税刺激、科研指导等手段,促进企业减排降污,限制了高污染、高能耗行业的发展。同时,向民众推广低碳文化、低碳理念,在全社会形成崇尚低碳、清洁能源的良好风气。其为全球减碳做出的各项有效举措值得借鉴。

  中国“双碳”变革必将为国际环保事业作出贡献。

  一则,中国作为目前全球第一大温室气体排放国,在实现“碳中和”的进程中,对全球减排的贡献毋庸置疑。中国大力推进生态文明建设,推进新能源发展,进行低碳变革,为世界环保事业作出了突出贡献。

  二则,让世界看到中国践行“双碳”理念。其他国家可以从中国的行动措施中获得经验借鉴。同时,形成示范效应与国际减碳风气,给部分消极国家带来压力,倒逼其推进减碳事业,最终促进全球减碳。

航拍塞罕坝千年秀林。(无人机照片)韩冰 摄

航拍塞罕坝千年秀林。(无人机照片)韩冰 摄

  最后,中国推行低碳还能带来更多商机。例如,大力发展可再生能源、开发新能源汽车等,均涉及数字化改造。这意味着部分企业在新领域的商机,也有助于加速国家新能源技术创新,甚至带动全球新能源技术的发展,为经济与生态带来双重增益。(完)

  受访者简介:

  庞军,中国人民大学环境学院院长,教授,博士生导师。主要研究领域为资源与环境经济学、能源与气候变化经济学。现为中国高等教育学会生态文明教育研究分会学术委员会成员、中国人民大学国家发展与战略研究院研究员、中国人民大学生态文明研究院研究员。

  • 诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?******

      相比起今年诺贝尔生理学或医学奖、物理学奖的高冷,今年诺贝尔化学奖其实是相当接地气了。

      你或身边人正在用的某些药物,很有可能就来自他们的贡献。

    诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

      2022 年诺贝尔化学奖因「点击化学和生物正交化学」而共同授予美国化学家卡罗琳·贝尔托西、丹麦化学家莫滕·梅尔达、美国化学家巴里·夏普莱斯(第5位两次获得诺贝尔奖的科学家)。

      一、夏普莱斯:两次获得诺贝尔化学奖

      2001年,巴里·夏普莱斯因为「手性催化氧化反应[1] [2] [3]」获得诺贝尔化学奖,对药物合成(以及香料等领域)做出了巨大贡献。

      今年,他第二次获奖的「点击化学」,同样与药物合成有关。

      1998年,已经是手性催化领军人物的夏普莱斯,发现了传统生物药物合成的一个弊端。

    诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

      过去200年,人们主要在自然界植物、动物,以及微生物中能寻找能发挥药物作用的成分,然后尽可能地人工构建相同分子,以用作药物。

      虽然相关药物的工业化,让现代医学取得了巨大的成功。然而随着所需分子越来越复杂,人工构建的难度也在指数级地上升。

      虽然有的化学家,的确能够在实验室构造出令人惊叹的分子,但要实现工业化几乎不可能。

      有机催化是一个复杂的过程,涉及到诸多的步骤。

      任何一个步骤都可能产生或多或少的副产品。在实验过程中,必须不断耗费成本去去除这些副产品。

      不仅成本高,这还是一个极其费时的过程,甚至最后可能还得不到理想的产物。

      为了解决这些问题,夏普莱斯凭借过人智慧,提出了「点击化学(Click chemistry)」的概念[4]。

      点击化学的确定也并非一蹴而就的,经过三年的沉淀,到了2001年,获得诺奖的这一年,夏普莱斯团队才完善了「点击化学」。

      点击化学又被称为“链接化学”,实质上是通过链接各种小分子,来合成复杂的大分子。

      夏普莱斯之所以有这样的构想,其实也是来自大自然的启发。

      大自然就像一个有着神奇能力的化学家,它通过少数的单体小构件,合成丰富多样的复杂化合物。

      大自然创造分子的多样性是远远超过人类的,她总是会用一些精巧的催化剂,利用复杂的反应完成合成过程,人类的技术比起来,实在是太粗糙简单了。

      大自然的一些催化过程,人类几乎是不可能完成的。

      一些药物研发,到了最后却破产了,恰恰是卡在了大自然设下的巨大陷阱中。

       夏普莱斯不禁在想,既然大自然创造的难度,人类无法逾越,为什么不还给大自然,我们跳过这个步骤呢?

      大自然有的是不需要从头构建C-C键,以及不需要重组起始材料和中间体。

      在对大型化合物做加法时,这些C-C键的构建可能十分困难。但直接用大自然现有的,找到一个办法把它们拼接起来,同样可以构建复杂的化合物。

      其实这种方法,就像搭积木或搭乐高一样,先组装好固定的模块(甚至点击化学可能不需要自己组装模块,直接用大自然现成的),然后再想一个方法把模块拼接起来。

      诺贝尔平台给三位化学家的配图,可谓是形象生动[5] [6]:

    诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

      夏普莱斯从碳-杂原子键上获得启发,构想出了碳-杂原子键(C-X-C)为基础的合成方法。

      他的最终目标,是开发一套能不断扩展的模块,这些模块具有高选择性,在小型和大型应用中都能稳定可靠地工作。

      「点击化学」的工作,建立在严格的实验标准上:

      反应必须是模块化,应用范围广泛

      具有非常高的产量

      仅生成无害的副产品

      反应有很强的立体选择性

      反应条件简单(理想情况下,应该对氧气和水不敏感)

      原料和试剂易于获得

      不使用溶剂或在良性溶剂中进行(最好是水),且容易移除

      可简单分离,或者使用结晶或蒸馏等非色谱方法,且产物在生理条件下稳定

      反应需高热力学驱动力(>84kJ/mol)

      符合原子经济

      夏尔普莱斯总结归纳了大量碳-杂原子,并在2002年的一篇论文[7]中指出,叠氮化物和炔烃之间的铜催化反应是能在水中进行的可靠反应,化学家可以利用这个反应,轻松地连接不同的分子。

      他认为这个反应的潜力是巨大的,可在医药领域发挥巨大作用。

      二、梅尔达尔:筛选可用药物

      夏尔普莱斯的直觉是多么地敏锐,在他发表这篇论文的这一年,另外一位化学家在这方面有了关键性的发现。

      他就是莫滕·梅尔达尔。

    诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

      梅尔达尔在叠氮化物和炔烃反应的研究发现之前,其实与“点击化学”并没有直接的联系。他反而是一个在“传统”药物研发上,走得很深的一位科学家。

      为了寻找潜在药物及相关方法,他构建了巨大的分子库,囊括了数十万种不同的化合物。

      他日积月累地不断筛选,意图筛选出可用的药物。

      在一次利用铜离子催化炔与酰基卤化物反应时,发生了意外,炔与酰基卤化物分子的错误端(叠氮)发生了反应,成了一个环状结构——三唑。

      三唑是各类药品、染料,以及农业化学品关键成分的化学构件。过去的研发,生产三唑的过程中,总是会产生大量的副产品。而这个意外过程,在铜离子的控制下,竟然没有副产品产生。

      2002年,梅尔达尔发表了相关论文。

      夏尔普莱斯和梅尔达尔也正式在“点击化学”领域交汇,并促使铜催化的叠氮-炔基Husigen环加成反应(Copper-Catalyzed Azide–Alkyne Cycloaddition),成为了医药生物领域应用最为广泛的点击化学反应。

    诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

      三、贝尔托齐西:把点击化学运用在人体内

      不过,把点击化学进一步升华的却是美国科学家——卡罗琳·贝尔托西。

    诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

      虽然诺奖三人平分,但不难发现,卡罗琳·贝尔托西排在首位,在“点击化学”构图中,她也在C位。

      诺贝尔化学奖颁奖时,也提到,她把点击化学带到了一个新的维度。

      她解决了一个十分关键的问题,把“点击化学”运用到人体之内,这个运用也完全超出创始人夏尔普莱斯意料之外的。

      这便是所谓的生物正交反应,即活细胞化学修饰,在生物体内不干扰自身生化反应而进行的化学反应。

      卡罗琳·贝尔托西打开生物正交反应这扇大门,其实最开始也和“点击化学”无关。

      20世纪90年代,随着分子生物学的爆发式发展,基因和蛋白质地图的绘制正在全球范围内如火如荼地进行。

      然而位于蛋白质和细胞表面,发挥着重要作用的聚糖,在当时却没有工具用来分析。

      当时,卡罗琳·贝尔托西意图绘制一种能将免疫细胞吸引到淋巴结的聚糖图谱,但仅仅为了掌握多聚糖的功能就用了整整四年的时间。

      后来,受到一位德国科学家的启发,她打算在聚糖上面添加可识别的化学手柄来识别它们的结构。

      由于要在人体中反应且不影响人体,所以这种手柄必须对所有的东西都不敏感,不与细胞内的任何其他物质发生反应。

      经过翻阅大量文献,卡罗琳·贝尔托西最终找到了最佳的化学手柄。

      巧合是,这个最佳化学手柄,正是一种叠氮化物,点击化学的灵魂。通过叠氮化物把荧光物质与细胞聚糖结合起来,便可以很好地分析聚糖的结构。

      虽然贝尔托西的研究成果已经是划时代的,但她依旧不满意,因为叠氮化物的反应速度很不够理想。

      就在这时,她注意到了巴里·夏普莱斯和莫滕·梅尔达尔的点击化学反应。

      她发现铜离子可以加快荧光物质的结合速度,但铜离子对生物体却有很大毒性,她必须想到一个没有铜离子参与,还能加快反应速度的方式。

      大量翻阅文献后,贝尔托西惊讶地发现,早在1961年,就有研究发现当炔被强迫形成一个环状化学结构后,与叠氮化物便会以爆炸式地进行反应。

    诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

      2004年,她正式确立无铜点击化学反应(又被称为应变促进叠氮-炔化物环加成),由此成为点击化学的重大里程碑事件。

    诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

      贝尔托西不仅绘制了相应的细胞聚糖图谱,更是运用到了肿瘤领域。

      在肿瘤的表面会形成聚糖,从而可以保护肿瘤不受免疫系统的伤害。贝尔托西团队利用生物正交反应,发明了一种专门针对肿瘤聚糖的药物。这种药物进入人体后,会靶向破坏肿瘤聚糖,从而激活人体免疫保护。

      目前该药物正在晚期癌症病人身上进行临床试验。

      不难发现,虽然「点击化学」和「生物正交化学」的翻译,看起来很晦涩难懂,但其实背后是很朴素的原理。一个是如同卡扣般的拼接,一个是可以直接在人体内的运用。

    「  点击化学」和「生物正交化学」都还是一个很年轻的领域,或许对人类未来还有更加深远的影响。(宋云江)

      参考

      https://www.nobelprize.org/prizes/chemistry/2001/press-release/

      Pfenninger, A. Asymmetric Epoxidation of Allylic Alcohols: The Sharpless Epoxidation[J]. Synthesis, 1986, 1986(02):89-116.

      Rao A S . Addition Reactions with Formation of Carbon–Oxygen Bonds: (i) General Methods of Epoxidation - ScienceDirect[J]. Comprehensive Organic Synthesis, 1991, 7:357-387.

      Kolb HC, Finn MG, Sharpless KB. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew Chem Int Ed Engl. 2001 Jun 1;40(11):2004-2021.

      https://www.nobelprize.org/uploads/2022/10/popular-chemistryprize2022.pdf

      https://www.nobelprize.org/uploads/2022/10/advanced-chemistryprize2022.pdf

      Demko ZP, Sharpless KB. A click chemistry approach to tetrazoles by Huisgen 1,3-dipolar cycloaddition: synthesis of 5-acyltetrazoles from azides and acyl cyanides. Angew Chem Int Ed Engl. 2002 Jun 17;41(12):2113-6. PMID: 19746613.

    中国网客户端

    国家重点新闻网站,9语种权威发布

    彩神彩票app地图